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Abstract

A discrete population balance model, where the probabilities of particular bonds breaking within a given mer are assigned individual weights, is

studied. The model represents an extension of previous population balance models and provides a framework for the analysis of a number of

different scission mechanisms including pure random scission, end-chain scission, simultaneous random and end-chain scission and break-at-a-

point scission. The main thrust of the work is aimed at interpreting observed degradation rates of PMMA. The model suggests that both random

and end-chain scission must occur in order to reproduce the observed dependence of degradation rate with initial degree of polymerisation at low

temperatures. However, at high temperatures it was found that molecule size dependence must also be incorporated in order to explain the

observed behaviour.

q 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Accurate and well founded theoretical descriptions of the

thermal degradation mechanisms of solid polymers are vital in

numerous research areas including chemical recycling appli-

cations, and fire and combustion science. Not only is it

important to be able to predict degradation and volatilisation

rates for a variety of heating conditions, it is also important to

be able to predict the composition of the volatile products.

The last 10 years has seen an increase in the effort of

researchers to develop new mathematical models of particular

degradation mechanisms for polymers, such as random scission

and end-chain scission, based on population balance equations.

In this approach, the population of polymer molecules is either

viewed as a collection of chains of infinitely variable length,

which may break at any point (continuous models) or as a set of

molecules, which may break at only a finite number of

locations (discrete models). A specific scission mechanism is

then applied to the population of molecules, resulting in either

an integro-differential equation or a set of ordinary differential

equations describing the evolution of the frequency distri-

bution, depending on whether the continuous or discrete view

of the molecular spectrum is employed. In general, the discrete

modelling approach is probably preferable, as it more closely
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resembles the actual bond breaking process. However, the

continuous approach is often more convenient and more

tractable for analysis. The drawback of the population balance

approach is that convenient, closed-form solutions for the

frequency distributions are elusive and so one is often forced to

rely on numerical solutions, which may require considerable

effort to achieve.

McCoy and co-workers [1–5] have led the way in the

development of continuous population balance models and as a

result of their work much insight into these processes has been

gained. In a recent paper [6], the author analysed a continuous

model for random scission with recombination and presented

the general solutions of the continuous random scission model

and the continuous recombination model. Discrete models

have also been successfully applied in a number of situations

and references [7–11] are a representative but incomplete

selection. Finally, the other approach qualifying for inclusion

in this brief overview involves the use of Monte-Carlo-type

methods to model polymerisation and degradation of polymers

[12–14]. These methods have been shown to agree well with

models based on population balance equations for random

scission, end-chain scission and recombination [8,9].

This paper presents an extension of previous discrete

population balance models, and analyses the case where

individual weights may be assigned to each bond within a

particular linear molecule. As will be seen, this framework

encompasses models for random scission as well as end-chain

scission and new insights into these processes are presented.
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It will also be used to analyse the case of simultaneous random

and end-chain scission, which is thought to be important in the

thermal degradation of PMMA [15–18]. The analysis of other

scission mechanisms is also possible within this framework and

the break-at-a-point model is briefly presented and

investigated.

For brevity, the following abbreviations are used below: RS

(random scission), ECS (end-chain scission), UID (uniform

initial distribution) and TG (thermogravimetric).
2. The general bond-weighted model

Consider a population of molecules containing Ni i-mers,

iZ1, 2.n. Let the relative probability of bond j breaking

within an i-mer be wðiÞ
j , so that

PiK1
jZ1 wðiÞ

j Z1. Furthermore, let

the total number of molecules in the population be

NZ
Pn

iZ1 Ni. Assuming that the rate at which bonds break in

a group of i-mers is proportional to the number of bonds in the

group and that no molecules are removed from the population,

then in time step Dt, the expected number of j-mers and (iKj)-

mers formed from the scission of bond j in a population of

i-mers will be kiðiK1ÞwðiÞ
j NiDt, where ki is the temperature

dependent degradation rate for bond-breaking in an i-mer.

Now, i-mers will be formed by the scission of bonds jKi and i

in a j-mer with jOi. Consequently, the expected number of

i-mers formed from scissions in larger molecules in time step

Dt will be
Pn

jZiC1 kjðjK1Þðw
ðjÞ
jKi Cw

ðjÞ
i ÞNjDt. Therefore, the

evolution of the population will be governed by the system of

linear ordinary differential equations
dNi

dt
Z

KkiðiK1ÞNi

C
Xn

jZiC1

kjðjK1Þ w
ðjÞ
jKi Cw

ðjÞ
i

� �
Nj; i Z 1; 2; :::; nK1

KknðnK1ÞNn; i Z n

8>><
>>:

(1)
with initial conditions Ni(0)/N(0)Zni. Here ni is the fraction of

i-mers in the initial population. In reality it is likely that the

symmetry w
ðjÞ
i Zw

ðjÞ
jKi will be valid. However, as no significant

simplification of the analysis results from this observation, it

will not be employed.

For simplicity the process of recombination, where a j-mer

and an (iKj)-mer combine to form an i-mer, will be neglected,

although there are no insurmountable practical difficulties in

incorporating this process into the current model. If the rate at

which recombination occurs to form i-mers is kðrÞi , then the

modified model equations will be [9]
dNi

dt
Z

KkðrÞ1 N1 C
XN

jZ2

kjðjK1Þ w
ðjÞ
jK1 Cw

ðjÞ
1

� �
Nj; i Z 1

K kiðiK1ÞCkðrÞi

	 

Ni

C
XN

jZiC1

kjðjK1Þ w
ðjÞ
jKi Cw

ðjÞ
i

� �
Nj

C
kðrÞi

2N

XiK1

jZ1

NjNiKj; iO1

ð2Þ

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

However, the increased level of complexity of including this

feature reduces the amount of analysis possible without

recourse to numerical solutions. Two earlier papers [6,9]

consider the effect of recombination on models of pure random

scission and end-chain scission.

The general solution of the bond-weighted model can be

written down for isothermal conditions using the upper-

triangular structure of the system. Without going into detail,

it is

Ni

Nð0Þ
Z

n1 C
Xn

jZ2

kjU1j

ðt
0

Njðt
0Þ

Nð0Þ
dt 0; i Z 1

nie
Kki t C

Xn

jZiC1

kjUij

ðt
0

Njðt
0Þ

Nð0Þ
dt 0; i Z 2;.; nK1

nneKknt; i Z n

8>>>>>>>><
>>>>>>>>:

(3)

Here KiZ(iK1)ki and Uij Zw
ðjÞ
jKiCw

ðjÞ
i . For simplicity in

what follows, we shall assume that each ki has the same

value k, which is also assumed to be of Arrhenius form kðTÞZ
expðJKTA=TÞ where J is the logarithm of the pre-exponential

factor and TA is the activation temperature. Also if we define

dimensionless time t by

t Z

ðt
0

kðTðt 0ÞÞdt 0 (4)

then this enables us to develop solutions in terms of t that are

valid for any heating conditions. Once these have been found,

they may be compared with experimental results by calculating

t from the solution of dt/dtZk(T(t)), t(0)Z0.
2.1. Moments

The mth moment of the distribution mm is defined as mm ZPn
iZ1 imNi and it can easily be shown that

dmm

dt
Z

Xn

jZ1

SðmÞ
j Nj (5)

where SðmÞ
j Z ðjK1Þ

PjK1
iZ1ði

m C ðjKiÞm KjmÞw
ðjÞ
i . Now, in par-

ticular, we note that when mZ1, Sð1Þ
j Z0 for all j and so it

follows that the first moment m1 (proportional to the total mass

of the distribution) is constant if no molecules are removed.

Furthermore when mZ0, we have that Sð0Þ
j Z jK1 (since
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PiK1
jZ1 wðiÞ

j Z1) and so it follows that

dm0

dt
Z

Xn

jZ1

ðjK1ÞNj Z m1 Km0 (6)

The solution of this first order differential equation gives the

evolution of the total number of molecules in the population

NZm0:

N

Nð0Þ
Z c0Kðc0K1ÞeKt (7)

where c0Zm1/N(0) is the initial number-average degree of

polymerisation of the population.

The number-average degree of polymerisation c (equal to

the relative number-average molecular mass M1Zm1/m0) will

be given by

c Z
1

1Kð1K1=c0Þe
Kt

(8)

which indicates a linear relationship 1/cK1/c0w(1K1/c0)t

between 1/c and t for small t (or large c). The relative weight-

average molecular mass M2Zm2/m1 and the polydispersity hZ
M2/M1 will depend on the specific molecular bond weights w

ðjÞ
i .
0.0 0.5 1.0 1.5 2.0

τ

Fig. 1. Comparison between exact and approximate results for polydispersity

and molecular mass for random scission.
2.2. Volatilisation

For some applications, such as predicting volatilisation

rates, it is necessary to quantify the rate at which gaseous

products evolve. Some authors [3] have attempted to employ

relatively detailed mass transfer processes, however, following

the approach of earlier papers [6,8,9], we shall adopt the

simplest possible description, i.e. there exists a characteristic

number of repeat units mv below which polymer molecules are

volatile. With this in mind, let the mth partial moment m
ðjÞ
m of

the frequency distribution be defined as

mðjÞ
m ðtÞ Z

Xn

iZj

imNiðtÞ (9)

The fraction of remaining mass to initial mass will then be

approximated by m
ðmvÞ
1 ðtÞ=m1.
3. Specific scission mechanisms

3.1. Pure random scission

For pure RS, each bond within a molecule is equally likely

to break and consequently w
ðjÞ
i Z1=ðjK1Þ. This case, relevant

for the thermal degradation of polymers such as polyethylene,

has already been dealt with extensively in the literature [3,6,8].

However, it transpires, as will be seen presently, that when c0

is large, good approximations for the relative weight-average

molecular mass and the polydispersity during degradation may

be calculated.

Let NiðtÞZNðtÞeðiK1Þt4ðtÞ. Then for large n, we find that 4

satisfies the equation
d4

dt
C

4

N

dN

dt
Z 24

XN

iZ1

eKit (10)

The summation on the RHS is the infinite sum of a geometric

progression, common ratio eKt and equals eKt/(1KeKt). Now

noting from Eq. (7) that when tO0, dN=dtzNeKt=ð1KeKtÞ, it

follows from (10) that an approximate solution, valid when tO
0 and n is large, is 4z1KeKt. Hence the relative frequency of

i-mers will be given approximately by

NiðtÞ

NðtÞ
zeKðiK1Þtð1KeKtÞ (11)

Obviously this solution will not be valid initially as it takes no

account of the initial distribution of molecules, but we expect it

to be increasingly accurate as t increases, regardless of the

initial distribution.

Defining G(t)Z1/(1KeKt), it follows that the mth moment

is given approximately by mm zNðtÞð1KeKtÞ
Pm
iZ0

mCiðK1ÞiGðiÞ,

where mCiZm!=ði!ðmKiÞ!Þ is the binomial coefficient and

GðiÞZdiG=dti. Therefore, the relative number-average mol-

ecular mass M1, the relative weight-average molecular mass

M2 and the polydispersity h are given approximately by M1 z
1=ð1KeKtÞ; M2 zð1CeKtÞ=ð1KeKtÞ and hz1CeKt. These

quantities are compared with the exact results for a UID with

c0Z250 in Fig. 1. The approximate results give excellent

agreement for all cases except in the vicinity of tZ0, as

expected.
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It is possible to show from the population balance equations

that when n is large, the zeroth and first partial moments

(defined by Eq. (9) above) for pure random scission satisfy the

equations

dm
ðmvÞ
0

dt
Z m

ðmvÞ
1 Kð2mvK1Þm

ðmvÞ
0 ;

dm
ðmvÞ
1

dt
ZKmvðmvK1Þm

ðmvÞ
0

(12)

Assuming that mv is small enough so that the initial conditions

m
ðmvÞ
0 ð0ÞZNð0Þ; m

ðmvÞ
1 ð0ÞZm1 are valid, it may be easily shown

that the solutions of these equations are

m
ðmvÞ
0 ðtÞ

Nð0Þ
Z ðc0KðmvK1ÞÞeKðmvK1ÞtKðc0 KmvÞe

Kmvt (13)

m
ðmvÞ
1 ðtÞ

m1

Z mv 1K
mvK1

c0

� 

eKðmvK1ÞtKðmvK1Þ 1K

mv

c0

� 

eKmvt

(14)

Hence it follows that for large c0, instantaneous volatilisation

of species with fewer than mv repeat units implies that the

remaining mass will be given approximately by

m
ðmvÞ
1 =m1 zmveKðmvK1ÞtKðmvK1ÞeKmvt. Note that this corre-

sponds to Eq. (18) in Ref. [8] with rZ1KeKt. Therefore, we

have the remarkable result that for pure random scission, the

remaining mass is independent of the shape of the initial

molecular distribution. Furthermore, when the initial degree of

polymerisation is large, the remaining mass does not depend on

the initial distribution at all.

Also, when mv[1, a good approximation for the remaining

mass is m
ðmvÞ
1 =m1 zeKðmvK1Þtð1C ðmv K1ÞtÞ. This indicates that

if we define J�ZJC lnðmvK1Þ and k�ZexpðJ�KTA=TÞ, then

the remaining mass becomes m
ðmvÞ
1 =m1 zeKtð1CtÞ, i.e. a

function of t only, as long as we now define t by dt/dkZk*.

The graph in Fig. 2 shows a comparison of the model

prediction with experimental TG data for polyethylene. The

parameters J*Z24.06 and TAZ21,616 K were found from a

least squares best fit to the experimental data. The polyethylene

was supplied by Polymer Laboratories (UK) inc. with a
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Fig. 2. Comparison of model with constant heating rate TGA.
molecular weight of 2015 g molK1 and a polydispersity of

1.14, part no. 2650-3001, batch no. 26503-1. Although this

polymer has the drawback of having a much lighter molecular

weight than commercial polymers, it is free of additives, and

has few branch points along the molecule. The experiment was

conducted in nitrogen at a heating rate of 10 K minK1 using a

Shimadzu TGA-50 machine with initial sample mass of

approximately 8 mg.

The graph in Fig. 3 compares model predictions using the

same values for J* and TA found above, with isothermal TG

experiments in nitrogen using the same polymer. The desired

isothermal temperature was reached by initially increasing the

temperature at the TG analyser’s greatest rate of 50 K minK1.

Note that the initial heating period is also accounted for in the

model prediction through Eq. (4). Both this figure and Fig. 2

indicate that the model under predicts the observed mass loss

rate at low temperatures, but provides reasonable agreement at

moderate and higher temperatures.
3.2. Power law

We now consider an extension of the case above, where

there is an increasing probability of a bond breaking as we

move from the centre of the molecule to the end. Let the

probability of an end bond breaking be l times the probability

of a bond breaking in the middle of the molecule, then applying

a power law for the remaining bond weights gives

w
ðjÞ
i Z

1 C ðlK1Þjð2iKjÞ=ðjK2Þja

jK1 C ðlK1ÞsðaÞ
j

;

jR3; 1% i% jK1

(15)

with wð2Þ
1 Z1; wð3Þ

1 Zwð3Þ
2 Z1=2, and

s
ðaÞ
j Z

XjK1

iZ1

2iKj

jK2

����
����a; jR3 (16)

The graph in Fig. 4 shows some bond weight profiles for a

molecule with 250 repeat units for aZ1, 8, 64 and lZ100. The
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graphs in Figs. 5 and 6 show the effect of a on the relative

frequency distributions Nm/N for a UID at specific values of t

for lZ10.

When lZ1, or aZ0, the case of pure RS is recovered.

For jR3, as a/N, jð2iKjÞ=ðjK2Þja/0 for 1!i!jK1 and

jð2iKjÞ=ðjK2Þja /1 when iZ1 or jK1. This implies that as

a/N, s
ðaÞ
j /2, and so an end-bond weighted case is

recovered where

w
ðjÞ
i Z

l

2l C jK3
; i Z 1 or jK1

1

2l C jK3
; i Z 2; 3;.jK2

8>>>><
>>>>:

(17)

This case may be thought of as a mixture of simultaneous

RS and ECS, where the probability of an end bond breaking is l

times the probability of an internal bond breaking. The value of

l now determines the relative degree of ECS compared with

RS. As l/N, we recover the case of pure ECS, given for jO2

by

w
ðjÞ
i Z

1

2
; i Z 1 or jK1

0; otherwise

8><
>: (18)
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Fig. 5. Frequency distributions for aZ1, UID with c0Z250. (a) tZ0.008, (b)

tZ0.016, (c) tZ0.025, (d) tZ0.033, (e) tZ0.044.
Here species are lost only from the ends of molecules. Note

that this is fundamentally different from the conventional ECS

model, considered in an earlier paper [9], where the rate at

which monomers are lost is independent of the molecule size

and just depends on the number of molecules in the population.

It can be shown from the exact solution, or by direct solution

of the population balance equations, that for a UID, the

frequency distribution for pure ECS follows essentially a

binomial distribution,

NiðtÞ

Nð0Þ
Z

ðnK1Þð1KeKtÞC ð1KeKtÞnK1; i Z 1

nK1CiK1ð1KeKtÞnKieKðiK1Þt; 2% i!n

eKðnK1Þt; i Z n

8>><
>>: (19)

where (nK1)CiK1 is the binomial coefficient. Now when n is

large, the term (1KeKt)nK1 may be neglected in the

expression for N1, except when t/N. Comparison with Eq.

(7) then shows that for large n, N1(t)/N(0)zN(t)/N(0)K1, and

so it follows that the number of monomers will be much greater

than the frequency of any other molecule in the distribution for

0!t!N. Hence, for large n, if volatilisation occurs such that

monomers are removed instantaneously, then the remaining

mass will be given to a good approximation by

m
ðmvÞ
1

m1

z1K
N1ðtÞ

m1

zeKt (20)

and will be independent of the particular choice of mv.

Furthermore, given the observations made above, we should

also expect the remaining mass to be approximately

independent of the initial distribution provided that the initial

average degree of polymerisation is large. Note that this is in

direct contrast to the conventional view of ECS covered in an

earlier paper [9], where the degradation rates do not depend on

the number of bonds in the molecule (and hence the size of the

molecule), and the expected variation of remaining mass with t

does depend on the initial degree of polymerisation and is

given by m
ðmvÞ
1 =m1 z1Kt=c0.

Fig. 7 shows the effect of a on the remaining mass as a

function of time, taking mvZ10. This shows that for fixed k, the

model predicts that the effect of increasing RS is to increase the
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rate at which volatile products are produced compared with

ECS.
3.3. Break-at-a-point

The effect of a bond breaking at a particular location within

a molecule may also be investigated within this framework.

This would correspond in practice to a molecule with a weak

point located at a consistent point along its length. Let 0!
q%0.5 represent the fractional position along the length of a

molecule at which scission is to occur. Now, for a j-mer, this

implies that the bond b closest to q(jK1) will break. Let x be a

real number and let int(x) denote the integer part of x (so that

int(e)Z2, int(p)Z3, etc.). Then let 3Zq(jK1)Kint(q(jK1))

and define b as

b Z

1 if qðjK1Þ!1

intðqðjK1ÞÞ if 3!0:5

1 C intðqðjK1ÞÞ if 3R0:5

8><
>: (21)

Accordingly we define

w
ðjÞ
i Z

0 if isb

1 if i Z b and b Z jKb

0:5 if i Z b or i Z jKb and bsjKb

8><
>: (22)

The graph in Fig. 8 shows the computed relative frequency
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Fig. 8. Relative frequency plots at tZ0.0088 for qZ0.2, 0.5.
distributions for a UID (c0Z250) at a fixed value of t for qZ
0.2 and 0.5. Note that the frequency shows abrupt peaks at

appropriate fractions of the initial degree of polymerisation

(corresponding to qjc0 and (1Kq)jc0 for integer values of j).

The graph in Fig. 9 shows the effect of q on the remaining

mass (with mvZ10) as well as the relative frequencies at tZ
0.1, 0.2, 0.3, 0.4 for the qZ0.5 case.

4. Application to the thermal degradation of PMMA

Consider an experiment involving a polymer degrading by

pure ECS and let (texp, Texp, Mexp) represent the observed time,

temperature and ratio of mass/initial mass, respectively. Eq.

(20) above suggests that t may be calculated from the

experimental data by defining tZK1n Mexp and then k may

be found from kðTexpÞZKdðln MexpÞ=dtexp.

TG experiments in nitrogen on PMMA samples of two

different initial molecular weights were carried out. The

polymer samples were obtained from Polymer Laboratories

(UK) inc. with molecular weights 10,260 and 49,600 g molK1,

respectively (part nos. 2022-9001, 2023-3001, batch nos.

20229-10, 20233-11). In both cases the PMMA molecules were

terminated by diphenyl hexyl units. The heating curves for the

experiments are shown in Fig. 10 (the lighter molecular weight

sample was subjected to the grey heating curve and the heavier

sample was subjected to the black curve). The experimental

data were used to construct k as indicated above, and the results

are shown in the Arrhenius plot of Fig. 11. This plot indicates

that to a leading order, k does not depend strongly on the initial

molecular weight of the samples. A least squares fit to this data

gave the parameter values JZ14.15, TAZ12,668 K. Note that

there is some evidence in the lower molecular weight data of

two mass loss processes occurring—an observation already

well known from previous experimental studies [19,20].

The graph in Fig. 12 compares model predictions for the

remaining mass (using the Arrhenius parameters found above)

with TG data for the two different experiments. The symbols

correspond to the TG data and the curves to the predicted mass

fractions.

Previous isothermal studies with PMMA [16–18] have

shown that there is a dependence of the observed degradation

rate kobs on initial molecular weight which the pure ECS model

does not predict, nor is it clear from Fig. 11 that this is the case.

Therefore, a third experiment was carried out using PMMA

with initial molecular weight 518,900 g molK1 (part number

2023-9001, batch number 20239-7, supplied by Polymer

Laboratories, also terminated by diphenyl hexyl units).

The heating curve was the same as for the 49,600 g molK1

sample.

The results, shown in Fig. 13, indicate that kobs does indeed

depend on initial molecular weight for the higher MW sample.

Also from this figure, the solution of 14.14K12,668/TZ
23.85K19,318/T shows that when T!686 K, kobs increases

with 1/c0 and when TO686 K, kobs decreases with 1/c0. This

observation agrees well with the data of Barlow et al. [16],

where they found a transition from kobs increasing with 1/c0 to

kobs decreasing with 1/c0 at some temperature between 673 and



Fig. 9. Effect of breakage point on remaining mass (mvZ10) with frequency plots for qZ0.5.
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705 K (however, it should be noted that Holland and Hay [15]

noted a similar transition at a temperature between 643 and

673 K).

The discrepancy between the observed dependence of kobs on

1/c0 with the predictions of the pure ECS model may be due to a

lack of detail included in the pure ECS model. For example, the

model makes no distinction between a radical fragment and a

molecule and so no termination processes are explicitly

modelled. However, it has also been suggested, based on

isothermal studies [15–18], that RS plays an increasingly
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Fig. 10. Temperature–time curves used in TG experiments.
important role in the thermal degradation of PMMA, depending

on the temperature, and that this in turn affects the nature of the

dependence of degradation rate on initial molecular weight. In

order to investigate this situation, we now construct an

approximation for kobs for the end-bond weighted case (17)

above, which represents a degradation process involving a

simultaneous mixture of RS and ECS. Consider the behaviour of

the general bond-weighted solution for small t (the initial slope

of the mass loss curve may be used to estimate kobs). When t is

small, Eq. (3) above for a UID gives
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Fig. 11. Arrhenius plot of PMMA TG data.
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Using these expressions, it follows that
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Thus, if kECS is the degradation rate for pure end-chain scission,

for isothermal conditions it follows that

kobs

kECS
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Now, taking the weights given in Eq. (17) for end-bond

weighted scission, it may be shown from the expression above

that for large n,

kobs

kECS

z1 C
mvðmv K1ÞKc0

c0 C2ðlK1Þ
(26)

Recall that when lZ1, the case of pure RS is recovered and as
-0.0019 -0.0018 -0.0017 -0.0016 -0.0015 -0.0014
-10

-9

-8

-7

-6

-5

-4

-3

kobs decreases
with 1/χ0

kobs  increases
with 1/χ0

T = 686 K

 MW = 49600 gmol-1

 MW = 10260 gmol-1

 MW = 518900 gmol-1

 exp(14.15-12668/T)
 exp(23.85-19318/T)

ln
(k

ob
s)

-1/T

Fig. 13. Initial molecular weight dependence of degradation rate.
l/N the case of pure ECS is recovered. Therefore, when there

is simultaneous RS and ECS, the end-bond weighted model

predicts that kobs will increase with 1/c0. The graph in Fig. 14

shows the variation of kobs/kECS with 1/c0 for mvZ10. Note that

these results suggest that the relationship between kobs and is

linear only for the case of pure random scission and also that

increased ECS (increasing l) has the effect of reducing the slope

of the curve for moderate values of 1/c0.

Note also that an alternative method of incorporating RS

into the overall degradation mechanism would be to view pure

ECS and RS as separate parallel reactions, each with its own

distinct rate constant. If one does this, then it may be shown

that the effect on kobs is to replace Eq. (26) by the expression

kobs

kECS

Z 1 C
mvðmvK1Þ

c0

kRS

kECS

(27)

Clearly this is always a linear function of 1/c0 unless kRS is

zero. In order to reproduce the observed experimental

behaviour up to the transition where kobs reduces with 1/c0,

the ratio kRS/kECS would have to be a decreasing function of

temperature, again implying that ECS plays an increasingly

dominant role as temperature increases.

Returning to Fig. 13, it is apparent that the variation of kobs

with 1/c0 reduces as temperature increases up to 686 K. The

result above then suggests that this behaviour is consistent with

a simultaneous combination of RS and ECS at low

temperature, with ECS playing an increasingly dominant role

as temperature increases up to 686 K. The results of Barlow

et al. [16] also show this behaviour, although they reach a

different conclusion as to the relative importance of the

scission mechanisms. Holland and Hay [15] also reached this

conclusion, but by a fundamentally different route based on the

kinetic model of Lehrle et al. [21].

As temperature increases still further, Fig. 13, Holland and

Hay’s results [15] and those of Barlow et al. [16] show that kobs

reduces with 1/c0, which is not predicted by the end-bond

weighted model and so this behaviour is consistent with the

view that a separate scission process must be occurring.

Consideration of the experimental evidence suggests that at

higher temperatures, thermal degradation rates for all i-mers

are not the same and so the simplification made initially, that
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kiZk for all i, becomes invalid. In fact, it would appear that at

higher temperatures ki becomes an increasing function of i.

Hence a first-order correction to account for this process might

take the form

ki Z k C
iK1

c�

� 
b

k� (28)

where k*/k is small for temperatures below the transition, c* is

a critical degree of polymerisation and b is a characteristic

exponent. It may be shown that application of this correction to

the end-bond weighted model for a UID results in the following

approximate expression for kobs/kECS:

kobs

kECS

z 1 C
k�

kECS

c0

c�

� 
b
( )

1 C
mvðmvK1ÞKc0

c0 C2ðlK1Þ

� �
(29)

Note that in order for kobs to be a decreasing function of 1/c0

for some value of k*/kECS, it is necessary to take bR1. For the

sake of illustration, if we set lZ50, mvZ10, c*Z100, bZ1,

then the behaviour in Fig. 15 results, which qualitatively agrees

with the observed behaviour.

The kinetic approach of Lehrle et al. [21], where explicit

termination reactions are included leads to an expression of the

form

kobs

kECS

Z
2kRS

kECS

C
1

c0

� 

Z

for first-order termination, where Z is the ratio of the rate

constants for beta-scission and termination. This expression

arises through the assumption that there is only one reactive

site per molecule chain leading to the formation of monomers

and that random scission of a chain creates two chain

fragments. Note that this expression predicts that in the

absence of any RS events, kobs will be directly proportional to

1/c0.

It is important to understand that this approach views the

scission events in an entirely different manner to the present

approach. Here, the number of scission events depends on the

number of bonds in the molecule, implying that the rate of

monomer formation will also depend not just on the number,

but also on the size of the molecules present in the population.
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It is this property of the bond-weighted approach that leads to

the observation made in Section 3.2 that when the probability

of an end bond breaking is much greater than the probability of

any other bond in the molecule breaking (pure ECS) then kobs

will not depend on c0. In fact, if the traditional view of ECS is

adopted, where there is only one reactive site per molecule,

then application of population balance theory leads to a case

that has already been covered by the author in an earlier paper

[9]. In this case it transpires that kobs is directly proportional to

1/c0, in accord with the model of Lehrle et al.

5. Conclusion

The discrete bond-weighted population balance model

offers an extension over existing discrete population balance

models and provides a framework in which a number of

scission processes may be studied, including pure random

scission, end-chain scission, simultaneous combination of end-

chain and random scission, as well as more unusual

mechanisms such as break-at-a-point scission.

Adopting a simple view of volatilisation, where molecules

with fewer than mv repeat units volatilise as soon as they are

formed, it is possible to derive exact solutions for the

remaining mass for end-chain scission and pure random

scission. It was found that the volatilisation rate does not

depend on the initial distribution of molecules or mv for end-

chain scission, and depends only on mv and the number average

degree of polymerisation of the initial distribution for pure

random scission. Comparison of the pure random scission

model with experimental thermogravimetric data (both

isothermal and constant heating rate) gave reasonable

agreement for polyethylene of relatively low initial molecular

weight.

Comparison of the end-chain scission model with thermo-

gravimetric data for PMMA of relatively low initial molecular

weight showed good agreement. However, for higher

molecular weights, it was found that simple pure end-chain

scission was insufficient to explain the results. This discre-

pancy may be due to the fact that the scission model considered

here is insufficiently detailed, however, previous experimental

studies have suggested that random scission plays an important

role in the thermal degradation of PMMA and with this in

mind, a form of the bond-weighted model incorporating

simultaneous end-chain and random scission was investigated.

It was found that simultaneous random scission and end-chain

scission is sufficient to explain the observed degradation rates

at lower temperatures provided that end-chain scission

becomes increasingly dominant as temperature increases.

This observation is in agreement with conclusions reached by

previous workers [15] where a traditional kinetic model is used

to interpret the experimental data. However, at higher

temperatures experimental studies show that observed degra-

dation rates increase with initial degree of polymerisation—a

feature not predicted by the end-bond weighted model. Further

consideration suggested that the discrepancy might arise from

an initial simplification, where the degradation rates were

assumed to be independent of the size of the molecule. It was
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found that a correction to the degradation rate which involved

adding a temperature-dependent term, which is an increasing

function of molecule size could qualitatively reproduce the

observed dependence of degradation rate with initial degree of

polymerisation at higher temperatures.
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